8 research outputs found

    KB-Rank: efficient protein structure and functional annotation identification via text query

    Get PDF
    The KB-Rank tool was developed to help determine the functions of proteins. A user provides text query and protein structures are retrieved together with their functional annotation categories. Structures and annotation categories are ranked according to their estimated relevance to the queried text. The algorithm for ranking first retrieves matches between the query text and the text fields associated with the structures. The structures are next ordered by their relative content of annotations that are found to be prevalent across all the structures retrieved. An interactive web interface was implemented to navigate and interpret the relevance of the structures and annotation categories retrieved by a given search. The aim of the KB-Rank tool is to provide a means to quickly identify protein structures of interest and the annotations most relevant to the queries posed by a user. Informational and navigational searches regarding disease topics are described to illustrate the tool’s utilities. The tool is available at the URL http://protein.tcmedc.org/KB-Rank

    The Gene Ontology: enhancements for 2011

    Get PDF
    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources

    A Coordinated Approach by Public Domain Bioinformatics Resources to Aid the Fight Against Alzheimer's Disease Through Expert Curation of Key Protein Targets

    Get PDF
    BACKGROUND: The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE: To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS: We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS: Data from 954 papers has been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 7,45 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION: This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers

    Natural protein sequences are more intrinsically disordered than random sequences

    No full text
    corecore